Page 19 - ibdaa
P. 19
-b<¡~9¡EH -bJxF *]+°( * 18
H&°* ~|D*
b£K Db< I¡g~zEH $bCwD* E b£K F]gE I¡g~zE |s~{D* gJ *& J ° F&* 0° b~¦K + b~¦+ ¢< J]gE x£= 3(* *]+°( *H
fJxD* wG h£+ ]BH $bCwD* i*4bcg1*H *]+°( * i*4bcg1* E h/ ibFb£cD* wG *& b~¦K J&* 0°H f£<*]+°( * fBbD* E
f££cD* f_£cD* ¤A ¤CwD* H&* ¤<*]+(°* $*2&°* ¢< z£DH i*4bcg1°* b< ~{- ¤gD* i*4]D* ¢<
á«YGóHE’G ábÉ£dG
Êóàe ™ØJôe
Êóàe ™ØJôe
AÉ````cò``dG
bK -xE $bCwD* bC *3(* f-xE ¡- °& £- f£<*]+(°* fBbD* *& £cJ ¤Fb£+ 4b~{gF* ~64 ~{D*
+xD*
4*]pF°* £p- ¤A JbcgD* Ég1* ¡0 f+H5
Much Ado about Heteroscedasticity
fJxD* É1 EH ( Albert & Ruco, 1986) fcgD* ,xA É1 E ¥]£gD* $bCwD*H *]+°( * £+ fBÉD* h~8HO ]D
J°H bD* $bCwD* E ¢F2&* ]0 ¢D(* obgpJ ¤<*]+°( * D* &* ¤G bG f£~6b~6°& * ,xD*H (Guilford, 1968) f£.ÉjD*
¢< $bCwD* ¡J k£0 r¡~9¡+ D3 ¤Fb£cD* 4b~{gF°* ~7 xJO H $bCwD* E fcgD* wG I¡g~zE hp- ¤£pD* *]+(°* 5bmF(*
fJxF |pD f£<b+xD* ib_cgD* ¢< ]gD* 4*]pF°* £p- bg~6* JH ¥2¡D* 4¡pD* ¢< *]+°( *H ¤A&°* 4¡pD*
bFH ibFb£cD* ,xD* wG ~|- *]+°( *H $bCwD* £+ fBÉD* ~8¡D 2]gD* JbcgD* ,xA bg~6* d~zF°& * E DH fcgD*
&* ¢D(* (Hollingworth, 1942) "lxJ¡mD¡G" xJx- x£~{JH ,4]D* E EbD* I]D* £D(* x£~{J bE C ~{-H 4b~{gF°*
£+ £<]cD* E *xK £jC bg£< ¤A fj0bcD* ]m- DH f£Fb. fcg< 2¡/H ¢D*( x£~{J bE $bCwD* f/42 ]+ |BbgJ JbcgD*
ibJ¡g~zD* ¤A JbcgD* E fgsE ibJ¡g~zE 2¡/H ~|J ¤D 2]gD* JbcgD* ¡E ¤-b& J bGH *]K / y£gD* $bCwD* ¥H3 2*xA&°*
¦sE Jbc- ¤<*]+*( < 5bmF(* £g~zJ D $bCwD* ¤F]gE |s~7 ¥*& &b+ ¡D* E m~zJ *wGH ,4]D* E fgsD*
Jbc- DwC *¡~z£D ~¦+H £<]cE ¡F¡J 8bs~7&°* ¦+ b( A $bCwD* E °K ¡E *]K 0 5HbmgF bE]< DH -xE bc-4*
E b£D* ibJ¡g~zD* ¤A ÉK £pg~zE ¢g0 H*& bcK ~8 *]+°( * ¡J &* bg0b+ ,xD* wG q~z- bC ¦sE bc-4* -xE
-xE bc-4* ¦sE Jbc- $bCwD*
Sligh et al Ȇ2005;) Ix1*& i*4bcg1* ¢< c- °H $bCwD f£E i*4bcg1* ¢< c- fcgD* fJxF *& ¤A ~7 °H
f£<*]+(°* i*5bmF(ÉD bD* *& ]cD* EH ¤cJxmgD* kpcD* E bEK b- f~zgEH f£E fJxF bDH (Ruco & Albert, 1986
bE ¡F E jE&* I¡g~zE *]+(°* < $¤~7 C dgJ ~|D* ¤A hp~9H&* bCH jE&°* $*2&°* E °K b~7&* bG4bcg<b+ b~¦K J&*

