Page 52 - CONCEPTIONSOFGIFTEDNESS
P. 52
51 »¶Ø∏dG hGC /h »°VÉjôdG êÉàæà°S’G »a ¿ƒ¨HÉædG ÜÉѰûdG
George,W. C., & Denham, S. A. (1976). Curriculum experimentation for
the mathematically gifted. In D. P. Keating (Ed.), Intellectual talent: Re-
search and development (pp. 103–131). Baltimore: Johns Hopkins Uni-
versity Press.
Gilheany, S. (2001). The Irish Centre for Talented Youth –An adaptation
of the Johns Hopkins talent search model. Gifted and Talented Interna-
tional, 16, 102–104.
Gustin, W. C. (1985a). The development of exceptional research math-
ematicians. In B. S. Bloom (Ed.), Developing talent in young people (pp.
270–331). New York: Ballantine.
Gustin, W. C. (1985b). One mathematician: “Hal Foster.” In B. S. Bloom
(Ed.), Developing talent in young people (pp. 332–347). New York: Bal-
lantine.
Hilgard, E. R.,&Bower,G.H. (1974). Theories of learning (4th ed.). Engle-
wood Cliffs, NJ: Prentice Hall.
Hollingworth, L. S. (1942). Children above 180 IQ Stanford-Binet: Origin
and development. Yonkers, NY: World Book.
Hunt, J. M. (1961). Intelligence and experience. New York: Ronald Press.
Keating, D. P. (Ed.) (1976). Intellectual talent: Research and develop-
ment. Baltimore: Johns Hopkins University Press.
Keating, D. P., & Stanley, J. C. (1972). Extreme measures for the ex-
ceptionally gifted in mathematics and science. Educational Researcher,
1(9), 3–7.
Kornhaber,M. L. (2004). Using multiple intelligences to overcome cultural
barriers to identification for gifted education. In D. Boothe&J.C. Stanley
(Eds.), In the eyes of the beholder: Critical issues for diversity in gifted
education (pp. 215–225). Waco, TX: Prufrock Press.
Kramer, E. A. (1974). Nature and growth of modern mathematics. New
York: Fawcett World Library.
Lehman, H. C. (1953). Age and achievement. Princeton, NJ: Princeton
University Press.
Lubinski, D., & Benbow, C. P. (2000). States of excellence. American
Psychologist, 55, 137–150.

